(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
from(X) → cons(X, n__from(n__s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(n__s(n__s(X)), activate(Z)), n__cons(Y, n__filter(X, n__sieve(Y))))
sieve(cons(X, Y)) → cons(X, n__filter(X, n__sieve(activate(Y))))
from(X) → n__from(X)
s(X) → n__s(X)
filter(X1, X2) → n__filter(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
sieve(X) → n__sieve(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__filter(X1, X2)) → filter(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__sieve(X)) → sieve(activate(X))
activate(X) → X
Rewrite Strategy: INNERMOST
(1) DependencyGraphProof (BOTH BOUNDS(ID, ID) transformation)
The following rules are not reachable from basic terms in the dependency graph and can be removed:
head(cons(X, Y)) → X
tail(cons(X, Y)) → activate(Y)
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
primes → sieve(from(s(s(0))))
activate(n__filter(X1, X2)) → filter(activate(X1), activate(X2))
sieve(cons(X, Y)) → cons(X, n__filter(X, n__sieve(activate(Y))))
sieve(X) → n__sieve(X)
if(true, X, Y) → activate(X)
activate(X) → X
cons(X1, X2) → n__cons(X1, X2)
activate(n__s(X)) → s(activate(X))
filter(X1, X2) → n__filter(X1, X2)
activate(n__from(X)) → from(activate(X))
from(X) → cons(X, n__from(n__s(X)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), n__filter(n__s(n__s(X)), activate(Z)), n__cons(Y, n__filter(X, n__sieve(Y))))
if(false, X, Y) → activate(Y)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__sieve(X)) → sieve(activate(X))
Rewrite Strategy: INNERMOST
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
primes → sieve(from(s(s(0))))
activate(n__filter(z0, z1)) → filter(activate(z0), activate(z1))
activate(z0) → z0
activate(n__s(z0)) → s(activate(z0))
activate(n__from(z0)) → from(activate(z0))
activate(n__cons(z0, z1)) → cons(activate(z0), z1)
activate(n__sieve(z0)) → sieve(activate(z0))
sieve(cons(z0, z1)) → cons(z0, n__filter(z0, n__sieve(activate(z1))))
sieve(z0) → n__sieve(z0)
if(true, z0, z1) → activate(z0)
if(false, z0, z1) → activate(z1)
cons(z0, z1) → n__cons(z0, z1)
filter(z0, z1) → n__filter(z0, z1)
filter(s(s(z0)), cons(z1, z2)) → if(divides(s(s(z0)), z1), n__filter(n__s(n__s(z0)), activate(z2)), n__cons(z1, n__filter(z0, n__sieve(z1))))
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
s(z0) → n__s(z0)
Tuples:
PRIMES → c(SIEVE(from(s(s(0)))), FROM(s(s(0))), S(s(0)), S(0))
ACTIVATE(n__filter(z0, z1)) → c1(FILTER(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(z0) → c2
ACTIVATE(n__s(z0)) → c3(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(CONS(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(SIEVE(activate(z0)), ACTIVATE(z0))
SIEVE(cons(z0, z1)) → c7(CONS(z0, n__filter(z0, n__sieve(activate(z1)))), ACTIVATE(z1))
SIEVE(z0) → c8
IF(true, z0, z1) → c9(ACTIVATE(z0))
IF(false, z0, z1) → c10(ACTIVATE(z1))
CONS(z0, z1) → c11
FILTER(z0, z1) → c12
FILTER(s(s(z0)), cons(z1, z2)) → c13(IF(divides(s(s(z0)), z1), n__filter(n__s(n__s(z0)), activate(z2)), n__cons(z1, n__filter(z0, n__sieve(z1)))), S(s(z0)), S(z0), ACTIVATE(z2))
FROM(z0) → c14(CONS(z0, n__from(n__s(z0))))
FROM(z0) → c15
S(z0) → c16
S tuples:
PRIMES → c(SIEVE(from(s(s(0)))), FROM(s(s(0))), S(s(0)), S(0))
ACTIVATE(n__filter(z0, z1)) → c1(FILTER(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(z0) → c2
ACTIVATE(n__s(z0)) → c3(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(CONS(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(SIEVE(activate(z0)), ACTIVATE(z0))
SIEVE(cons(z0, z1)) → c7(CONS(z0, n__filter(z0, n__sieve(activate(z1)))), ACTIVATE(z1))
SIEVE(z0) → c8
IF(true, z0, z1) → c9(ACTIVATE(z0))
IF(false, z0, z1) → c10(ACTIVATE(z1))
CONS(z0, z1) → c11
FILTER(z0, z1) → c12
FILTER(s(s(z0)), cons(z1, z2)) → c13(IF(divides(s(s(z0)), z1), n__filter(n__s(n__s(z0)), activate(z2)), n__cons(z1, n__filter(z0, n__sieve(z1)))), S(s(z0)), S(z0), ACTIVATE(z2))
FROM(z0) → c14(CONS(z0, n__from(n__s(z0))))
FROM(z0) → c15
S(z0) → c16
K tuples:none
Defined Rule Symbols:
primes, activate, sieve, if, cons, filter, from, s
Defined Pair Symbols:
PRIMES, ACTIVATE, SIEVE, IF, CONS, FILTER, FROM, S
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 4 leading nodes:
SIEVE(cons(z0, z1)) → c7(CONS(z0, n__filter(z0, n__sieve(activate(z1)))), ACTIVATE(z1))
IF(true, z0, z1) → c9(ACTIVATE(z0))
IF(false, z0, z1) → c10(ACTIVATE(z1))
FILTER(s(s(z0)), cons(z1, z2)) → c13(IF(divides(s(s(z0)), z1), n__filter(n__s(n__s(z0)), activate(z2)), n__cons(z1, n__filter(z0, n__sieve(z1)))), S(s(z0)), S(z0), ACTIVATE(z2))
Removed 8 trailing nodes:
FILTER(z0, z1) → c12
FROM(z0) → c15
FROM(z0) → c14(CONS(z0, n__from(n__s(z0))))
SIEVE(z0) → c8
ACTIVATE(z0) → c2
S(z0) → c16
CONS(z0, z1) → c11
PRIMES → c(SIEVE(from(s(s(0)))), FROM(s(s(0))), S(s(0)), S(0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
primes → sieve(from(s(s(0))))
activate(n__filter(z0, z1)) → filter(activate(z0), activate(z1))
activate(z0) → z0
activate(n__s(z0)) → s(activate(z0))
activate(n__from(z0)) → from(activate(z0))
activate(n__cons(z0, z1)) → cons(activate(z0), z1)
activate(n__sieve(z0)) → sieve(activate(z0))
sieve(cons(z0, z1)) → cons(z0, n__filter(z0, n__sieve(activate(z1))))
sieve(z0) → n__sieve(z0)
if(true, z0, z1) → activate(z0)
if(false, z0, z1) → activate(z1)
cons(z0, z1) → n__cons(z0, z1)
filter(z0, z1) → n__filter(z0, z1)
filter(s(s(z0)), cons(z1, z2)) → if(divides(s(s(z0)), z1), n__filter(n__s(n__s(z0)), activate(z2)), n__cons(z1, n__filter(z0, n__sieve(z1))))
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
s(z0) → n__s(z0)
Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(FILTER(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(CONS(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(SIEVE(activate(z0)), ACTIVATE(z0))
S tuples:
ACTIVATE(n__filter(z0, z1)) → c1(FILTER(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(CONS(activate(z0), z1), ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(SIEVE(activate(z0)), ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
primes, activate, sieve, if, cons, filter, from, s
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c1, c3, c4, c5, c6
(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
primes → sieve(from(s(s(0))))
activate(n__filter(z0, z1)) → filter(activate(z0), activate(z1))
activate(z0) → z0
activate(n__s(z0)) → s(activate(z0))
activate(n__from(z0)) → from(activate(z0))
activate(n__cons(z0, z1)) → cons(activate(z0), z1)
activate(n__sieve(z0)) → sieve(activate(z0))
sieve(cons(z0, z1)) → cons(z0, n__filter(z0, n__sieve(activate(z1))))
sieve(z0) → n__sieve(z0)
if(true, z0, z1) → activate(z0)
if(false, z0, z1) → activate(z1)
cons(z0, z1) → n__cons(z0, z1)
filter(z0, z1) → n__filter(z0, z1)
filter(s(s(z0)), cons(z1, z2)) → if(divides(s(s(z0)), z1), n__filter(n__s(n__s(z0)), activate(z2)), n__cons(z1, n__filter(z0, n__sieve(z1))))
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
s(z0) → n__s(z0)
Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
S tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
primes, activate, sieve, if, cons, filter, from, s
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c1, c3, c4, c5, c6
(9) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
primes → sieve(from(s(s(0))))
activate(n__filter(z0, z1)) → filter(activate(z0), activate(z1))
activate(z0) → z0
activate(n__s(z0)) → s(activate(z0))
activate(n__from(z0)) → from(activate(z0))
activate(n__cons(z0, z1)) → cons(activate(z0), z1)
activate(n__sieve(z0)) → sieve(activate(z0))
sieve(cons(z0, z1)) → cons(z0, n__filter(z0, n__sieve(activate(z1))))
sieve(z0) → n__sieve(z0)
if(true, z0, z1) → activate(z0)
if(false, z0, z1) → activate(z1)
cons(z0, z1) → n__cons(z0, z1)
filter(z0, z1) → n__filter(z0, z1)
filter(s(s(z0)), cons(z1, z2)) → if(divides(s(s(z0)), z1), n__filter(n__s(n__s(z0)), activate(z2)), n__cons(z1, n__filter(z0, n__sieve(z1))))
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
s(z0) → n__s(z0)
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
S tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c1, c3, c4, c5, c6
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(n__cons(x1, x2)) = [1] + x1
POL(n__filter(x1, x2)) = x1 + x2
POL(n__from(x1)) = x1
POL(n__s(x1)) = [1] + x1
POL(n__sieve(x1)) = x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
S tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
K tuples:
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c1, c3, c4, c5, c6
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(n__cons(x1, x2)) = x1
POL(n__filter(x1, x2)) = x1 + x2
POL(n__from(x1)) = x1
POL(n__s(x1)) = x1
POL(n__sieve(x1)) = [1] + x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
S tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
K tuples:
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c1, c3, c4, c5, c6
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(n__cons(x1, x2)) = x1
POL(n__filter(x1, x2)) = x1 + x2
POL(n__from(x1)) = [1] + x1
POL(n__s(x1)) = x1
POL(n__sieve(x1)) = x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
S tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
Defined Rule Symbols:none
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c1, c3, c4, c5, c6
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = [3] + [3]x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(n__cons(x1, x2)) = x1
POL(n__filter(x1, x2)) = [3] + x1 + x2
POL(n__from(x1)) = x1
POL(n__s(x1)) = x1
POL(n__sieve(x1)) = x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
S tuples:none
K tuples:
ACTIVATE(n__s(z0)) → c3(ACTIVATE(z0))
ACTIVATE(n__cons(z0, z1)) → c5(ACTIVATE(z0))
ACTIVATE(n__sieve(z0)) → c6(ACTIVATE(z0))
ACTIVATE(n__from(z0)) → c4(ACTIVATE(z0))
ACTIVATE(n__filter(z0, z1)) → c1(ACTIVATE(z0), ACTIVATE(z1))
Defined Rule Symbols:none
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c1, c3, c4, c5, c6
(19) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(20) BOUNDS(1, 1)